- [증명]
∫−∞0Ei3(x)dx=[xEi3(x)]−∞0−∫−∞0x⋅3Ei2(x)xexdx=[x→0limxEi3(x)−x→−∞limxEi3(x)]−3∫−∞0exEi2(x)dx=(0−0)−3∫−∞0ex(−∫−x∞t1e−t1dt1)(−∫−x∞t2e−t2dt2)dx=−3∫−∞0∫−x∞∫−x∞t1t2exe−t1e−t2dt1dt2dxLet:x=−z=−3∫∞0∫z∞∫z∞t1t2e−ze−t1e−t2dt1dt2(−dz)Let:t1=zx,t2=zy⇒dt1=zdx,dt2=zdy=−3∫0∞∫1∞∫1∞zx⋅zye−ze−zxe−zyzdxzdydz=−3∫1∞∫1∞∫0∞xye−z(1+x+y)dzdxdy=−3∫1∞∫1∞[−xy(1+x+y)e−z(1+x+y)]z→0z→∞dxdy=−3∫1∞∫1∞[(−0)−(−xy(1+x+y)1)]dxdy=−3∫1∞∫1∞xy(1+x+y)1dxdy부분분수분해공식사용:ABC1=B(C−A)1(A1−C1)=−3∫1∞∫1∞y(1+y)1(x1−1+x+y1)dxdy=−3∫1∞y(1+y)1[lnx−ln(1+x+y)]x→1x→∞dy=−3∫1∞y(1+y)1[ln1+x+yx]x→1x→∞dy=−3∫1∞y(1+y)1(0−ln2+y1)dy=−3∫1∞y(1+y)ln(2+y)dyLet:y=u1=−3∫10u1(1+u1)ln(2+u1)(−u21)du=−3∫01u+1ln(2u+1)−lnudu⋯(1) 위의 정적분을 색깔별로 쪼개서 적분한 후 마지막에 값을 합쳐주면 된다.
∫01u+1ln(2u+1)du=∫01ln(2u+1)⋅2u+22du=[ln(2u+1)ln(2u+2)]01−∫012u+12ln(2u+2)duLet:1+2u=−v=(ln3ln4−0)−2∫−1−3−vln(1−v)(−21dv)=2ln2ln3+∫−1−3v−ln(1−v)dv=2ln2ln3+∫0−3v−ln(1−v)dv−∫0−1v−ln(1−v)dv=2ln2ln3+Li2(−3)−Li2(−1)⋯(2)
∫01u+1lnudu=[lnuln(u+1)]01−∫01u1ln(1+u)du=[0−u→0+limlnuln(u+1)]+∫01−uln(1−(−u))duLet:−u=t=0+∫0−1tln(1−t)(−dt)=∫0−1t−ln(1−t)dt=Li2(−1)⋯(3) 빨간색 적분 과정의 둘째 줄에 있는 극한값은 아래와 같이 계산됐다. 로피탈의 정리를 사용한 곳은 =∗로 나타내었다.
u→0+limlnuln(u+1)=u→0+lim1/ulnuuln(u+1)=u→0+lim1/ulnuu→0+limuln(u+1)=∗u→0+lim−1/u21/uu→0+lim11/(u+1)=−u→0+limuu→0+limu+11=−0⋅1=0 이제 (2), (3)의 값을 (1)에 대입하고, 폴리로그함수의 함숫값과 성질들을 사용하여 정리하면 최종적으로 정적분 ∫−∞0Ei3(x)dx의 값을 구할 수 있다.
∫−∞0Ei3(x)dx=−3∫01u+1ln(2u+1)−lnudu=−3(2ln2ln3+Li2(−3)−Li2(−1)−Li2(−1))=−6ln2ln3−3Li2(−3)+6Li2(−1)Li2(−1)=(2−1−1)ζ(2)=−12π2InversionFormula(x=−3):Li2(x)+Li2(x1)=−6π2−21ln2(−x)=−6ln2ln3−3[−Li2(−31)−6π2−21ln23]+6(−12π2)=3Li2(−31)−6ln2ln3+23ln23Landen′sIdentity(x=34):Li2(1−x)+Li2(1−x1)=−21ln2x=3[−Li2(41)−21ln2(34)]−6ln2ln3+23ln23=−3Li2(41)−23(2ln2−ln3)2−6ln2ln3+23ln23=−3Li2(41)−6ln22
|