바이어슈트라스 타원 함수

최근 수정 시각:
2
편집
IP 우회 수단(프록시 서버, VPN, Tor 등)이나 IDC 대역 IP로 접속하셨습니다. (#'30183489')
(VPN이나 iCloud의 비공개 릴레이를 사용 중인 경우 나타날 수 있습니다.)
잘못된 IDC 대역 차단이라고 생각하시는 경우 게시판에 문의하시길 바랍니다.
토론역사
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
다른 뜻 아이콘   바이어슈트라스가 만든 병리적 함수에 대한 내용은 바이어슈트라스 함수 문서를 참고하십시오.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. 개요2. 상세
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. 개요[편집]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Weierstraßsche \wp-Funktion / Weierstrass

카를 바이어슈트라스가 만든 특수함수의 하나로, \wp[1]로 표기한다. 정의는 다음과 같다.

(z)z2+Λ{0}((z)22)\displaystyle \wp(z) \equiv z^{-2} + \sum_{\ell \in \Lambda - \{0\}} ((z-\ell)^{-2} - \ell^{-2} )

\ell격자점, Λ\Lambda\ell집합이다.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. 상세[편집]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
복소수 위에서 매끄러운 함수다. 즉 해석함수이면서 무한번 미분이 가능하고, 연속이다.

이를 나타낸 그래프는 다음과 같다. 그래프를 보듯 모든 복소수에서 주기성을 띤다.

Weierstrass elli...

이름과는 달리 타원과는 별 상관없다. 이 함수는 타원곡선과 관련이 있는데, 복소공간에서 타원곡선 형태의 아래 식이 성립하기 때문이다.

[(z)]2=[(z)]3+A(z)+B[ \wp'(z) ]^2 = [ \wp(z) ]^3 + A \wp(z) + B

이 함수의 그래프는 원환면(일명 도넛 모양)임이 알려져 있다.[2]

&와 비슷하게 저 \wp를 예쁘게 그리기쓰기 어렵다. 그래서 쓸 때 귀찮으면 PP로 쓰기도 하는 모양.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[1] 흘려 쓴 소문자 P. 오로지 이 함수를 위해 만든 기호인지 다른 용도로는 쓰임이 없다. 아주 드물게 멱집합의 표기로도 쓰인다. 참고로 이 기호를 출력하는 TeX 명령어는 \wp다. ℘가 유니코드상으로도 존재하는데, U+2118에 배당되어 있다.[2] 두 복소수 방향으로 주기성을 지니고 있기에 위상수학적으로 원환면과 동일한 위상이 된다.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

크리에이티브 커먼즈 라이선스
이 저작물은 CC BY-NC-SA 2.0 KR에 따라 이용할 수 있습니다. (단, 라이선스가 명시된 일부 문서 및 삽화 제외)
기여하신 문서의 저작권은 각 기여자에게 있으며, 각 기여자는 기여하신 부분의 저작권을 갖습니다.

나무위키는 백과사전이 아니며 검증되지 않았거나, 편향적이거나, 잘못된 서술이 있을 수 있습니다.
나무위키는 위키위키입니다. 여러분이 직접 문서를 고칠 수 있으며, 다른 사람의 의견을 원할 경우 직접 토론을 발제할 수 있습니다.

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
더 보기